New Wearable Electronic Device to Revolutionize Stroke Rehabilitation
Amazing Health Advances Subscribe to Amazing Health Advances

To receive daily emails from Amazing Health Advances to your inbox CLICK HERE

New Wearable Electronic Device to Revolutionize Stroke Rehabilitation

News Staff — Northwestern University
Feb 27, 2018

A groundbreaking new wearable designed to be worn on the throat could be a game-changer in the field of stroke rehabilitation.

Developed in the lab of Northwestern University engineering professor John A. Rogers, in partnership with Shirley Ryan AbilityLab, the sensor is the latest in Rogers' growing portfolio of stretchable electronics that are precise enough for use in advanced medical care and portable enough to be worn outside the hospital, even during extreme exercise.

Rogers will present research on the implications of stretchable electronics for stroke recovery treatment at a press briefing at 11a.m. CST, Saturday, Feb. 17, at the American Association for the Advancement of Science (AAAS) annual meeting in Austin, Texas. The briefing, "Biomedical Sensors in Service of Society," will be held at 11 a.m. CST in Room 6, Level 3 of the Austin Convention Center.

Rogers also will discuss his work at the AAAS presentation "Soft Electronics for the Human Body" from 4:30 to 5 p.m. CST Feb. 17, at the AAAS meeting. Rogers' talk, to be held in Room F of the Austin Convention Center, is part of the scientific session "Biomedical Sensors: Advances in Health Monitoring and Disease Treatment."

Rogers' sensors stick directly to the skin, moving with the body and providing detailed health metrics including heart function, muscle activity and quality of sleep.
"Stretchable electronics allow us to see what is going on inside patients' bodies at a level traditional wearables simply cannot achieve," Rogers said. "The key is to make them as integrated as possible with the human body."

Rogers' new bandage-like throat sensor measures patients' swallowing ability and patterns of speech. The sensors aid in the diagnosis and treatment of aphasia, a communication disorder associated with stroke.

The tools that speech-language pathologists have traditionally used to monitor patients' speech function - such as microphones - cannot distinguish between patients' voices and ambient noise.

"Our sensors solve that problem by measuring vibrations of the vocal chords," Rogers said. "But they only work when worn directly on the throat, which is a very sensitive area of the skin. We developed novel materials for this sensor that bend and stretch with the body, minimizing discomfort to patients."

Shirley Ryan AbilityLab, a research hospital in Chicago, uses the throat sensor in conjunction with electronic biosensors...

Click here to continue reading.

Click Here For More Information


 

 

 

 





Amazing Health Advances